
1st International Conference **Modern research trends in biomedical sciences: a holistic approach to healthcare** Institute of Health Sciences, University of Opole, Poland

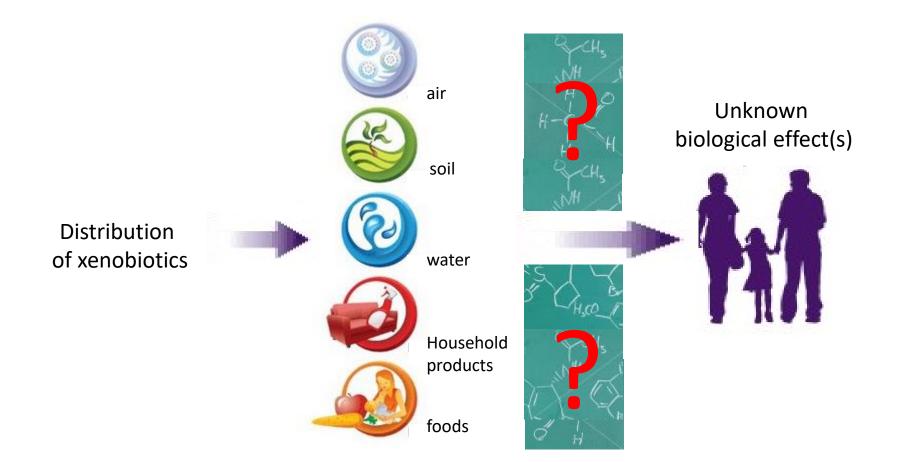
Information technologies as a tool for identification of endocrine disrupting chemicals

Milen Todorov, assoc. prof., PhD University "Prof. Dr. Assen Zlatarov", Burgas, BULGARIA

April 2024

Highlights:

- Human health and global chemical safety
- Recent achievements in computational chemistry
- Application of computer tools for identification of estrogen disrupting chemicals (EDC)



- Landmarks in EDC Research and computational chemistry
- Prediction the binding effect of chemicals toward the estrogen receptor
- Conclusions

EDC Research Timeline

Silent Spring The book "Silent Spring" by the American biologist Rachel Carson was published.	The "DES catastrophe"	The term "Endocrine Disrupter" is firstly introduced.	WHO Issues First Global Assessment of the State of the Science of EDCs	First use of the term "obesogen"	Endocrine Society issues Position Statements on EDCs	Introduction of the term "metabolism- disrupting chemicals"
1962	1971	1991	2002	2006	2009	2015
Its publication was a seminal event for the environmental movement and resulted in a large public outcry that eventually led, in 1972, to a ban on the agricultural use of DDT in the USA.	Children born to mothers prescribed DES were found to have increased risk of a rare reproductive tract cancer in their early 20's. DES is recognized as a transplacental carcinogen.	During Wingspread meeting, where 21 international scientists from 15 different disciplines convened to share their research relevant to transgenerational health impacts, the term "endocrine disruption" was coined.	The document examined human health impacts on reproduction, neurobehavior, cancer, the immune system, and other endocrine systems potentially vulnerable to EDCs	In 2006, researchers at the University of California, Irvine, highlighted the role of environmental chemicals in the emerging obesity epidemic and coined the term "obesogen".	The Task Force's work resulted in a comprehensive scientific document published in 2009 as the Society's first Scientific Statement.	Parma consensus statement proposed the term "metabolism- disrupting chemicals (MDCs)" to describe the environmental chemicals that have the ability to promote diabetes, obesity and fatty liver, through perturbing metabolism at multiple levels.

Xenobiotics in the environment

How many chemicals are available in the EU environment

?

Do we know their possible biological/toxic effect(s)

Computational chemistry and human health

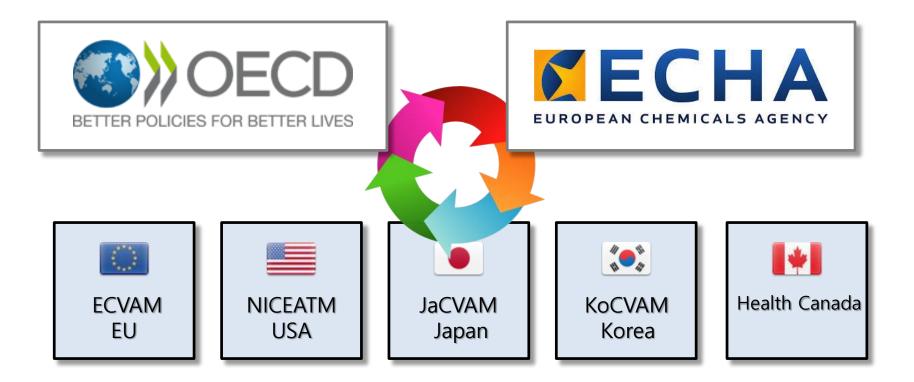
European CHemicals Agency Helsinki, Finland

REACH is the European Regulation on Registrtion, Evaluation, Authorisation and Restriction of Chemicals.

It entered into force in 2007, replacing the former legislative framework for chemicals in the EU.

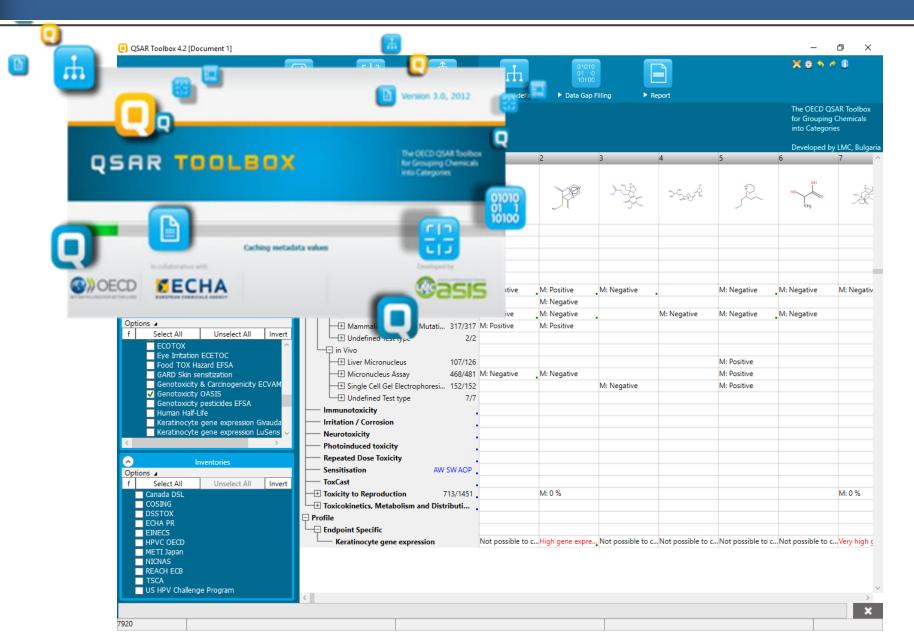
Computational chemistry and human health

European CHemicals Agency Helsinki, Finland


REACH is the European Regulation on Registrtion, Evaluation, Authorisation and Restriction of Chemicals.

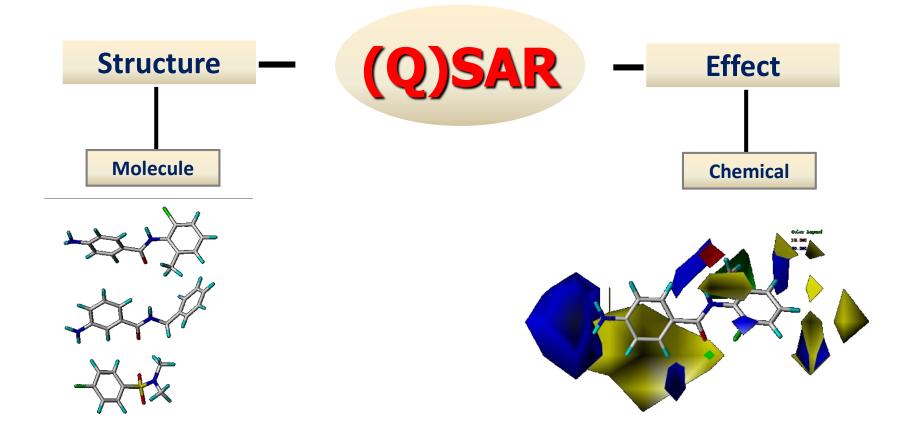
It entered into force in 2007, replacing the former legislative framework for chemicals in the EU.

The Aim is to evaluate the potential risk to human health of **30,000 chemicals** used in sufficiently high volume (1 tonne or more per year).

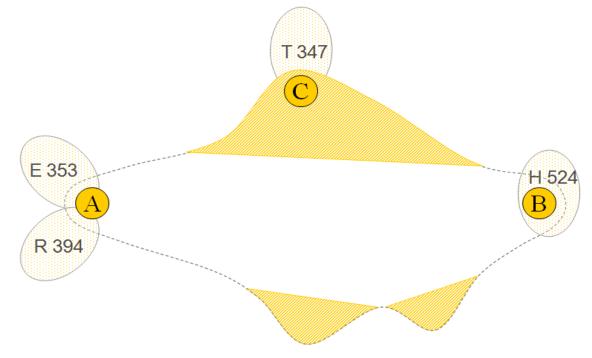

The main question is how to assess the potential risk of those **30,000 chemicals** to harm human health?

The REACH legislation allows assessment of the chemicals based on alternative non-testing methods. In this respect a non-commercial software tool called OECD QSAR TOOLBOX have been developed and used for prediction of variety biological/toxic effects.

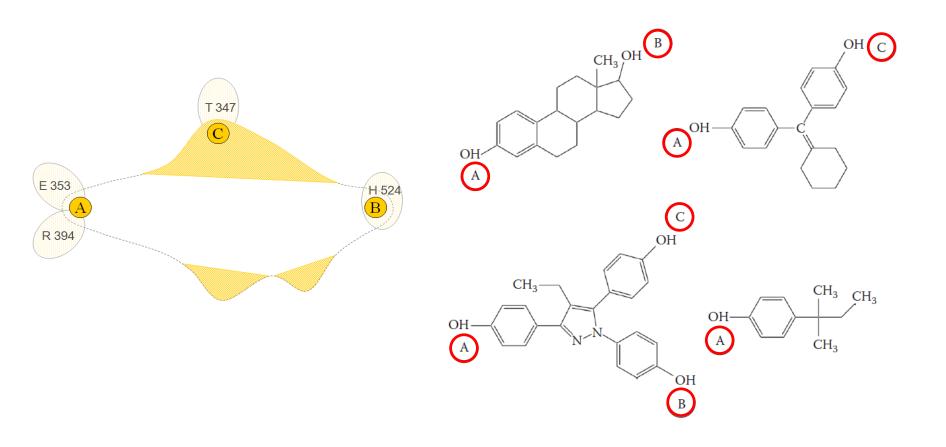
Computational chemistry and human health


Main actions performed by the Toolbox:

- Indicates if a chemical is included in national/regional regulatory inventories or existing chemical categories.
- Searches for available experimental results for the chemical of interest.
- Explores a chemical list for possible similar chemicals.
- Extracts experimental data for similar chemicals.
- Allows user to construct and apply their own models

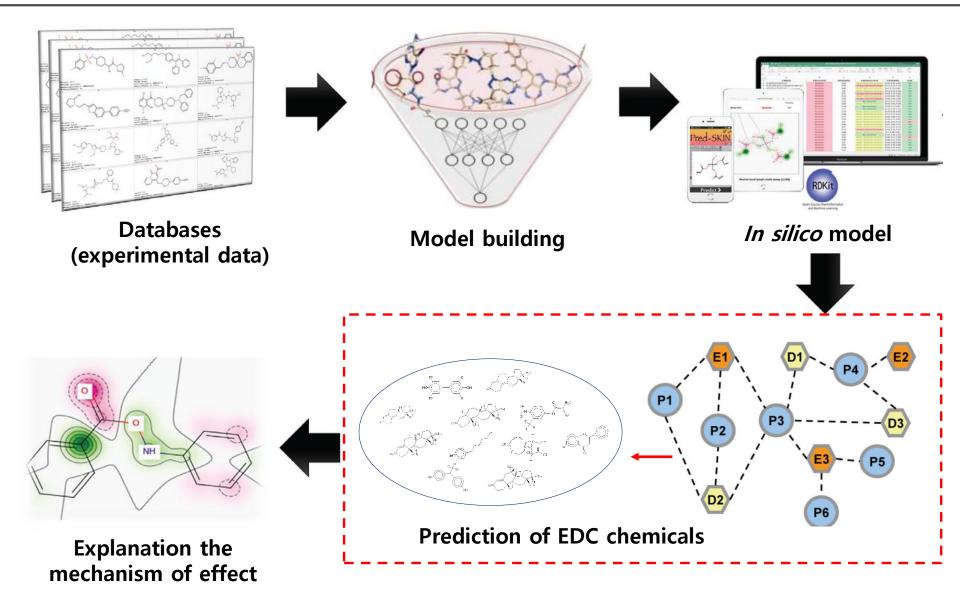

- Landmarks in EDC Research and computational chemistry
- Prediction the binding effect of chemicals toward the estrogen receptor
- Conclusions

QSAR method for idenstification of EDCs



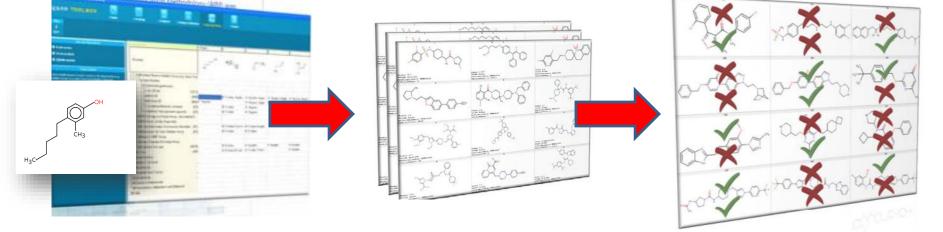
<u>Specificity of receptor-ligand interactions</u> Schematic representation of ER binding pocket

• Recognized are three sites of interaction within the pocket*


Specificity of receptor-ligand interactions

<u>Steps in Estrogen hormon-receptor function</u> Stimulates development and maintenance of female sexual characteristics.

Modelling steps and prediction of EDCs


Prediction the binding effect of chemicals toward the estrogen receptor

Profiling Custom pro	Input	Data Category definition Data Gap Filling Report	The OECD QSAR Too for Grouping Chemic into Categories
	ilete		Developed by LMC, E
Documents	Estrogen Receptor Binding (General N	echanistic) - Profiling Scheme Browser -	7
Profiling metho			
tions Select All Unselect All Inv	Save Scheme Export Scheme S	ave Tests View Tests Run All Tests	- 🧊
DECD HPV Chemical Categorie	Categories	Definition Properties Training Set Literature MetaInfo Table Scheme	
Substance type JS-EPA New Chemical Catego	Filter:	Category tree	
e ral Mechanistic iodeg BioHC half-life (Biowin)	 Estrogen Receptor Binding Moderate binder, NH2 group 	Query details	
iodegradation primary (Biowir	Moderate binder, OH grooup	[0] Structure Query Metabolism	
Biodegradation probability (Bio Biodegradation probability (Bio	Non binder, impaired OH or NH2 Non binder, MW>500	Contents	
iodegradation probability (Bio Iiodegradation probability (Bio	Non binder, non cyclic structure	Oueries Search 1: SMARTS [NH2,N+H3][\$([#6HR]1[#6H2] Edit	M: Ne
Biodegradation probability (Bic	Non binder, without OH or NH2 <u>c</u> Strong binder, NH2 group	oMasks View mode: Facade ✓ Naviga	
Biodegradation ultimate (Biow DNA binding by OASIS	Strong binder, OH group	view mode: Facade * Naviga	
ONA binding by OECD Estrogen Receptor Binding	Very strong binder, OH group Weak binder, NH2 group		
Hydrolysis half-life (Ka, pH 7)(F	Weak binder, OH group		
Iydrolysis half-life (Ka, pH 8)(I Iydrolysis half-life (Kb, pH 7)(I			
lydrolysis half-life (Kb, pH 8)(I		Add Query Remove	
lydrolysis half-life (pH 6.5-7.4 onization at pH = 1		Add Mask 1	
onization at $pH = 4$ onization at $pH = 7.4$		Complex search options	
onization at pH = 9		✓ Exact connectivity	
Protein binding by OASIS Protein binding by OECD		Ignore stereo information	
rotein binding potency Cys (Exact match	
rotein binding potency GSH rotein binding potency Lys (I			
Toxic hazard classification by C Toxic hazard classification by C		Queries execution mode All	M: 0 9
Itimate biodeg		Mapping	
point Specific Acute aquatic toxicity classifica		✓ Unique mappings	
Acute aquatic toxicity MOA by		Max maps 1000	o cVery h
Aquatic toxicity classification b Bioaccumulation - metabolism		Left click on any marked atom to explore	
······			

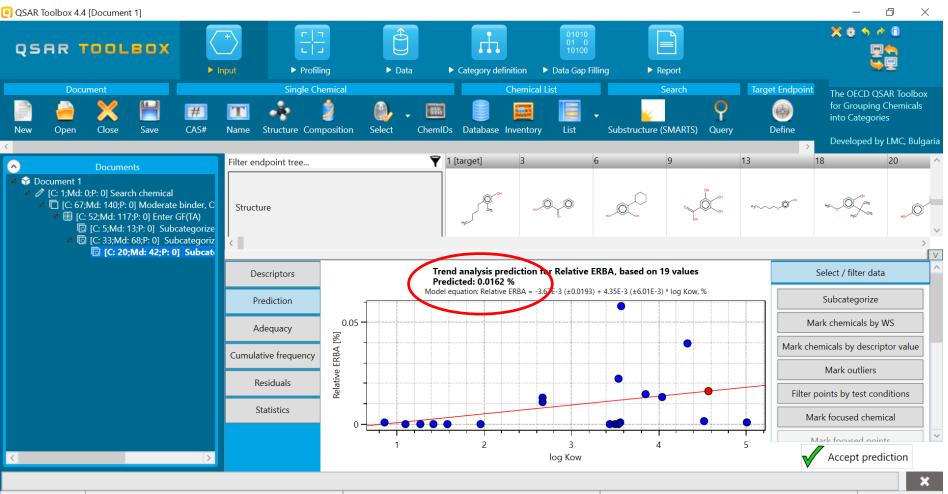
Prediction the binding effect of chemicals toward the estrogen receptor

QSAR TOOLEOX	Imput ► Profiling ► Date		01010 0100 Gap Filling ► Report	× • *	
Data Import Export Gather Import UCLID6 UCLID6	😑 😑			for Group into Categ	
 > Documents ▲ ▲ Document 1 ■ Genotoxicity OASIS 	Filter endpoint tree Filter endpoint tree Structure Bioaccumulation Carcinogenicity Developmental Toxicity / Teratogenici	T 2 H₂C₀	3 4 1 25% 25%	5 6	d by LMC, Bulgaria
62 available da chemicals with a	on of the OECD tabases contain above 3 million n ata for estrogen	ing more t neasured da	han 100 00 Ita points.	00	M: Negativ
more than 2800					M: 0 %

Case study for *3-methyl-4-pentylphenol*

If data is not available

1) Input target chemical


2) Search for experimental data

3) Applying rules or model for prediction

Case study for 3-methyl-4-pentylphenol

đ \times QSAR Toolbox 4.4 [Document 1] 🗙 🙃 🥱 🥐 🗊 Ð Н QSAR TOOLBOX Input Profiling Data Data Gap Filling Report The OECD QSAR Toolbox Categorize for Grouping Chemicals into Categories Define Define with metabolism Subcat Developed by LMC, Bulgaria 4 T [target] 3 5 6 7 2 \odot (^) Estrogen Receptor Binding HyCarlo CH ÔÔ Options 🖌 f Select All Unselect All Invert Abo CH3 Biodegradation probability (Biowin Biodegradation probability (Biowin Biodegradation ultimate (Biowin 3) H₃C DNA binding by OASIS AW SW AOP DNA binding by OECD Estrogen Receptor Binding Hydrolysis half-life (Ka, pH 7)(Hydrowin) Toxicity to Reproduction Hydrolysis half-life (Ka, pH 8)(Hydrowin) + Relative ARBA M: NaN % 21/22 Hydrolysis half-life (Kb, pH 7)(Hydrowin) - Relative ERBA Hydrolysis half-life (Kb, pH 8)(Hydrowin) 42/42 M: 0.013 % M: 0.018 % M: 0.0747 % M: 0.0147 % M:0% - Human Hydrolysis half-life (pH 6.5-7.4) M: 0.0009 % Rat 7/7 Ionization at pH = 1Ionization at pH = 4M: 0.013 % M: 0.018 % M: 0.0747 % M: 0.0147 % Recombinant human estrogen r... 58/58 M: NaN % Ionization at pH = 7.4- Trout 11/11 M: 0.00042 % Ionization at pH = 9- Toxicokinetics, Metabolism and Distribution Protein binding by OASIS Protein binding by OECD Profiling Protein binding potency Cys (DPRA 13%) ---- General Mechanistic Protein binding potency GSH Moderate binder... Estrogen Receptor Binding Protein hinding notency Lyc (DPPA 1306) ×

Predicted as weak binder to the estrogen receptor

CONCLUSIONS

- Computational tools could be used successfully for identification of EDCs
- Users of the QSAR Toolbox software are able to apply different techniques for predictions
- Theoretical predictions reduces significantly financial resources for experimental tests

Thank you for your attention!

Milen Todorov University "Prof. Dr. Assen Zlatarov", Burgas, BULGARIA